Introduction \LaTeX

Dirk Van Hertem
dirk.vanhertem@esat.kuleuven.be

Departement elektrotechniek
IEEE student branch Leuven

October 15, 2014
1. Introduction
 - Installation

2. Writing a text with \LaTeX
 - \LaTeX document structure
 - Structure in a document

3. Math

4. Tabellen

5. Figures

6. Bibliography/references

7. \LaTeX at KU Leuven engineering

8. Useful tools and references
Introduction

About \LaTeX

- \LaTeX is not a word processor!
- It is a document typesetting program, with the aim of getting a beautiful result
- You edit source, view results in pdf (compare with html and real webpage)

Why \LaTeX?

- Neat and professional look
- Easy for formulas
- No problems with numbering and references
- Platform independent
- Small files
- Multiple languages and fonts
- Stable: in Running and in Time
- Changes and collaboration: good editor or svn, subversion, …
History of \TeX

- Donald E. Knuth (Stanford prof) was writing a book in 1977, and did not like the layout his publisher made, especially formulas.
- He decided he could do better and started making \TeX.
- In 1978 DEK took a sabbatical and finished \TeX.
- In 1982 and 1989, next version appeared, so we are now at version 3.
- Each next version approaches π a bit closer (Version 3.1415926-2.5-1.40.14 (TeX Live 2013/Debian)).

History of \LaTeX

- \LaTeX is a group of macro’s written around \TeX.
- Developed by Leslie Lamport in the beginning of the eighties.
- Currently we have version \LaTeX2e, with \LaTeX3 somewhere in the pipeline.
- (there are multiple other \TeX-derivates, such as ConTeXt, AMS-\TeX, Xe\TeX, ...).
What you need

- Not WYSIWYG
 - Editor (http://www.tex.ac.uk/cgi-bin/texfaq2html?label=editors),
 - compiler (real \LaTeX)
 - and viewer

- Before installation: visit the website of the software

Linux

- Editor: Kile, emacs (+auctex), kate, gedit,…
- Alternative: Lyx is een WYSIWYM editor
- Distribution: TeXLive
- Viewer: acrobat reader, evince, okular, gv,…
- Installation: use your package manager (apt-get)
What you need

- Not WYSIWYG
 - Editor (http://www.tex.ac.uk/cgi-bin/texfaq2html?label=editors),
 - compiler (real \LaTeX)
 - and viewer

- Before installation: visit the website of the software

Windows

- Editor:
 - Winedt (http://www.winedt.com)
 - TeXnicCenter (http://www.texniccenter.org)
 - \LaTeX Editor (http://www.latexeditor.org/), ...

- Lyx is a WYSIWYM editor

- Miktex (http://www.miktex.org) or TeXLive

- Yap for dvi (using miktex), gv (http://www.cs.wisc.edu/~ghost) and acrobat reader
What you need

- Not WYSIWYG
 - Editor (http://www.tex.ac.uk/cgi-bin/texfaq2html?label=editors),
 - compiler (real \LaTeX)
 - and viewer

- Before installation: visit the website of the software

Mac

- http://guides.macrumors.com/Installing_LaTeX_on_a_Mac
What you need

- Not WYSIWYG
 - Editor (http://www.tex.ac.uk/cgi-bin/texfaq2html?label=editors),
 - compiler (real \LaTeX)
 - and viewer

- Before installation: visit the website of the software

Which Editor do I use?

- In principle, each editor is fine
- But a good editor has
 - font highlighting for \LaTeX
 - spell check
 - debugging options
 - short-cuts for running latex and for often used commands, …
What you need

- Not WYSIWYG
 - Editor (http://www.tex.ac.uk/cgi-bin/texfaq2html?label=editors),
 - compiler (real \LaTeX)
 - and viewer

- Before installation: visit the website of the software
How does \LaTeX work

- pdf-\LaTeX method is the easiest and recommended way
- Alternative (traditional) is \LaTeX
 - Needed for some packages such as $pstricks$

Figure: \LaTeX process
In detail with different file formats

\begin{itemize}
 \item \texttt{.tex}
 \item \texttt{.dvi}
 \item \texttt{.aux}
 \item \texttt{.ps}
 \item \texttt{.pdf}
 \item \texttt{.bbl}
\end{itemize}

Latex

\texttt{pdflatex}

Bibtex

\texttt{ps2pdf}
The \LaTeX language

- Commands start with a backslash: \\
 - e.g. \LaTeX gives \LaTeX and \footnote{the footnote}, results in a footnote
- Comments start with the percent sign: %
 - “lots of text, % little contents” results in “lots of text,
- Arguments to a command that are obligated, are placed between curly brackets: \{ and \}
 - “3rd” results in 3rd
- Options are placed between square brackets: [and]
 - example: \section[short title]{long title}
- \LaTeX places the spaces, not you. This is between words and between paragraphs
- The commands \begin{NAME} and \end{NAME} indicate the beginning and end of the environment NAME.
- Note: After a latex command, no space is generated
 - “\LaTeX is great” results in “\LaTeX is great”
 - “\LaTeX{} and \TeX\ are great” results in “\LaTeX and \TeX are great”
Structure of a document

2 major parts

\documentclass[options]{document_class}
% header
\begin{document}
% body
\end{document}
Writing a text with \LaTeX

\LaTeX document structure

\documentclass[options]{document_class}

Document classes:

- \texttt{article} for articles in scientific journals, presentations, short reports, program documentation, invitations,\ldots
- \texttt{minimal} is as small as it can get. It only sets a page size and a base font. It is mainly used for debugging purposes.
- \texttt{report} for longer reports containing several chapters, small books, theses, \ldots
- \texttt{book} for real books
- \texttt{beamer} for slides. The class uses big sans serif letters.
- \texttt{memoir} for changing sensibly the output of the document. It is based on the book class, but you can create any kind of document with it.
- \texttt{Koma script} similar to memoir but exists of a large set of independent document classes (scrbook, scrreport, scrartcl).
- \texttt{letter} for writing letters.
- \texttt{IEEEtran} for submitting to IEEE transactions.
\documentclass \{document_class\} \{options\} Some common options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10pt, 11pt, 12pt</td>
<td>Sets the size of the main font in the document. If no option is specified, 10pt is assumed.</td>
</tr>
<tr>
<td>a4paper, letterpaper,…</td>
<td>Defines the paper size. a5paper, b5paper, executivepaper, and legalpaper can be specified.</td>
</tr>
<tr>
<td>fleqn</td>
<td>Typesets displayed formulas left-aligned instead of centered.</td>
</tr>
<tr>
<td>leqno</td>
<td>Places the numbering of formulæ on the left hand side instead of the right.</td>
</tr>
<tr>
<td>titlepage, notitlepage</td>
<td>The article class does not start a new page by default, while report and book do.</td>
</tr>
<tr>
<td>onecolumn, twocolumn</td>
<td>Instructs \LaTeX{} to typeset the document in one column or two columns.</td>
</tr>
<tr>
<td>twoside, oneside</td>
<td>The classes article and report are single sided and the book class is double sided by default. Note that this option concerns the style of the document only. The option twoside does not tell the printer you use that it should actually make a two-sided printout.</td>
</tr>
<tr>
<td>landscape</td>
<td>Changes the layout of the document to print in landscape mode.</td>
</tr>
<tr>
<td>openright, openany</td>
<td>Makes chapters begin either only on right hand pages or on the next page available. This does not work with the article class, as it does not know about chapters. The report class by default starts chapters on the next page available and the book class starts them on right hand pages.</td>
</tr>
<tr>
<td>draft</td>
<td>makes \LaTeX{} indicate hyphenation and justification problems with a small square in the right-hand margin of the problem line so they can be located quickly by a human.</td>
</tr>
</tbody>
</table>
Header and body

Header

- To define additional packages and options
 - `\usepackage[swedish]{babel}` loads the package babel (hyphenation support for non-English), with the option `swedish`
- For your own command definitions
- Make once, reuse afterwards
 - Good practice: load only what is needed to avoid problems and facilitate debugging (comment what you don’t need)

Body

- Your text and everything with it.
- Example: look at the thesis template
Some basic packages in every \LaTeX{} distribution.

- **doc**: Allows documenting \LaTeX{}
- **exscale**: For additional font sizes
- **fontenc**: Font encoding to be used (T1 or other)
- **ifthen**: Basic programming for \LaTeX{}
- **latexsym**: For the \LaTeX{}-font for symbols
- **makeidx**: To make an index
- **babel**: For non-English texts. Note, it changes also other names (chapter will be Kapitel etc.).
- **graphicx**: To include figures
- **tabularx**: Tables with fixed width
- **hyperref**: Links in your files
- **Thousands of others**: ...
Document structure

Hierarchie

\part{part}
\chapter{chapter}
\section{section}
\subsection{subsection}
\subsubsection{subsubsection}
\paragraph{paragraph}
\subparagraph{subparagraph}

- Without enumeration: \section*{eerste sectie}
- Short and long title: \section[kort]{eerste sectie}
- Not all documentclasses have all levels!
Document structure

Title
- `\title{}, \author{} and \date{} in header`
- `\maketitle in main file`

Appendix
- `\appendix`
- Everything after the command, is begin placed in the appendix
- Also the numbering of the chapters, sections, figures, tables, ... will/can change (depending on your document class)
Special signs

- These symbols cannot be used directly in a text:
 - \%
 - $\$
 - \&
 - \~
 - _
 - \^
 - \{
 - \}

- They have a special meaning, and need to be “escaped” using a backslash
 - \% \$ \& \~ _ \^ \{ \}
gives \% $ \& \~ \^ \{

- The backslash itself is \textbackslash:\backslash, or as \backslash: \backslash

- A double backslash $\backslash\backslash$ indicates a line end

- Gives also the possibility to include a vertical space: $\backslash\backslash[8\text{cm}]$

- Some symbols have a special code: \ldots, ..., \texttrademark, TM

- All symbols: [Link to Comprehensive Symbols]

All symbols: [Link to Comprehensive Symbols]
Accents

- Traditionam: no accents (not commonly used in English and not within ASCII)
- solution: accent is a command on a character:
 - \'a, \'e, \"o en \~u
 - á, è, ö en û
- You can type accents directly, but you have to use input encoding (\usepackage[utf8]{inputenc}), normally together with font encoding (depending on the language, e.g. \usepackage[T1]{fontenc})
- Depending on the system, this can be default behavior
- Not supported in bibtex
- Conclusion:
 - Accents as command work always
 - It is easy to configure for yourself
 - Might give issues with compatibility
References

label and ref

- A \texttt{\label} can be placed immediately after (or in) a (sub-)(subsub-)section command
- In the caption of a figure or tabel
- With a formule
- With a theorema,…
- The \texttt{\ref} can be anywhere in the normal text
- Usefull names are important (exceptions can be formulas)
- No spaces
- Tell what kind of label it is
 - \texttt{\label\{fig:overzichtschema\}}: puts “fig:overzichtschema” with an object
 - \texttt{\ref\{tab:mendeljev\}}: refers to the label “tab:mendeljev”
 - \texttt{\pageref\{eq:12\}} refers to the page with the label “eq:12”
- A good editor helps you!
Finally: do it yourself!

\documentclass[a4paper,11pt]{article}
\title{My first \LaTeX{} document}
\author{This is the place where you put your name}

\begin{document}
\maketitle
\section*{Introduction}
No number for the introduction\ldots
\section{First words in \LaTeX{}}
This text is just filling the space that is here, you can put anything here

Let us now try some accents: \’a, \‘e, \"o and \~u.
\subsection{A subtitle}
Enough for the first document
\end{document}
Finally: do it yourself!

Make it a habit to put a label with every section, figure and table! (good editors help you)

\documentclass[a4paper,11pt]{article}
\title{My first \LaTeX{} document}
\author{This is the place where you put your name}
\begin{document}
\maketitle
\section*{Introduction}\label{sec:intro}
No number for the introduction\ldots
\section{First words in \LaTeX{}}\label{sec:first-word}
This text is just filling the space that is here, you can put anything here

Let us now try some accents: \’a, \‘e, \"o and \^u.
\subsection{A subtitle}\label{sec:subtitle}
Enough for the first document
\end{document}
Debugging

THE most annoying about \LaTeX

- Error messages can be obscure (80-ties software)
- Where do you start?

How to start looking for errors

1. Check the log (only look at the top/first error), maybe the error is clear…
2. You forgot brackets? Environment forgotten to close? Typo in command?…
3. Analyze the error message (L.210 means around line 210)
 - ! LaTeX Error: \begin{enumerate} on input line 9 ended by \end{itemize}.
4. Comment important pieces to isolate the fault
5. Move with your \end{document} until it compiles
6. Google!
7. Ask help on the net/friends/comp.text.tex/…
Environments

- Between \begin{NAME} and \end{NAME}
- Other rules apply in these regions (e.g. pagewidth, font,...)
- Examples:
 - quote
 - verse
 - verbatim
 - center
 - minipage
 - tabular
 - equation
 - itemize
 - figure
Lists

\begin{itemize}
\item one
\item two
\end{itemize}

\begin{enumerate}
\item Firstly it is something
\item and secondly something else
\end{enumerate}

\begin{description}
\item [eerste label:] test test
\item [tweede label:] test failed
\end{description}

- They can be nested...
Special lists

- \tableofcontents
- \listoffigures
- \listoftables

Put them where you want them in your text (e.g. after your \maketitle)
Big files

- Subdivide the text (in chapters?)
- \include{/path/to/file} in the body where you want it (and start on a new page)
- \includeonly{bestand1,bestand7} in the header to only compile some parts (faster on very old machines)
- \input{file} inserts the file directly, without starting on a new page
Math mode

This is where \LaTeX really becomes easy

In normal text

- To use mathematics in a normal text, e.g. $\sqrt{\frac{\epsilon}{2}}$, we use the math mode
Math mode

This is where \LaTeX{} really becomes easy

In normal text

- To use mathematics in a normal text, e.g. $\sqrt{\frac{\varepsilon}{2}}$, we use the math mode
 - $\sqrt{\frac{\varepsilon}{2}}$
 - $\sqrt{\text{frac}{\varepsilon}{2}}$
 - $\sqrt{\text{frac}{\varepsilon}{\text{2}}}$
Math mode

This is where \LaTeX really becomes easy

In normal text

- To use mathematics in a normal text, e.g. $\sqrt{\frac{\varepsilon}{2}}$, we use the math mode
- $\sqrt{\frac{\varepsilon}{2}}$
- $\sqrt{\frac{\varepsilon}{2}}$
- $(\sqrt{\frac{\varepsilon}{2}})$
Math mode

This is where \LaTeX really becomes easy

In normal text

- To use mathematics in a normal text, e.g. $\sqrt{\frac{\varepsilon}{2}}$, we use the math mode
- $\sqrt{\frac{\varepsilon}{2}}$
- \(\sqrt{\frac{\varepsilon}{2}}\)
- \begin{math}\sqrt{\frac{\varepsilon}{2}}\end{math}
Math mode

This is where \LaTeX really becomes easy

In normal text

- To use mathematics in a normal text, e.g. $\sqrt{\frac{\varepsilon}{2}}$, we use the math mode
- \$\sqrt{\frac{\varepsilon}{2}}\$
- \((\sqrt{\frac{\varepsilon}{2}})\)
- \begin{math}\sqrt{\frac{\varepsilon}{2}}\end{math}
To use a formula not in an inline text (when important or too long), we use the displaymath mode:
Math mode: II

Displaymath mode

To use a formula not in an inline text (when important or too long), we use the displaymath mode:

\begin{equation*}
\sqrt{\frac{\varepsilon}{2}}
\end{equation*}
To use a formula not in an inline text (when important or too long), we use the displaymath mode:

\begin{displaymath}
\sqrt{\frac{\varepsilon}{2}}
\end{displaymath}

\begin{equation*}
\sqrt{\frac{\varepsilon}{2}}
\end{equation*}
Math mode: II

Displaymath mode

\[\sqrt{\frac{\varepsilon}{2}} \]

To use a formula not in an inline text (when important or too long), we use the displaymath mode:

\begin{equation*}
\sqrt{\frac{\varepsilon}{2}}
\end{equation*}

\begin{displaymath}
\sqrt{\frac{\varepsilon}{2}}
\end{displaymath}

$$\sqrt{\frac{\varepsilon}{2}}$$
Displaymath mode

To use a formula not in an inline text (when important or too long), we use the displaymath mode:

\[
\sqrt{\frac{\varepsilon}{2}}
\]

- \begin{equation*} \sqrt{\frac{\varepsilon}{2}} \end{equation*}
 \(\Leftarrow \) Use this one

- \begin{displaymath} \sqrt{\frac{\varepsilon}{2}} \end{displaymath}

- \[\sqrt{\frac{\varepsilon}{2}} \]
Formulas with numbers

- Using numbered formulas: equation environment:
 \begin{equation}
 \sqrt{\frac{\varepsilon}{2}}
 \end{equation}

\[
\sqrt{\frac{\varepsilon}{2}} \tag{1}
\]

- Putting different equations nicely aligned underneath each other: align environment (uit amsmath)
- Alignment is done on &, which you can see in the formulas 2 and 3
- Alternative is eqnarray (right & middle & left)

\begin{align}
q & = \sqrt{\frac{\varepsilon}{2}} \label{eq:3} \\
\frac{\pi^2}{6} & = \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} \label{eq:4}
\end{align}

\[
q = \sqrt{\frac{\varepsilon}{2}} \tag{2}
\]

\[
\frac{\pi^2}{6} = \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} \tag{3}
\]
Brackets in math mode

- round and square brackets without \ and curly brackets with \
- or use \left and \right
- or use $\big(\Big\{\bigg[\Bigg($

\begin{align}
\sin(x)+y &= \left[z + \frac{a+b+\frac{4^k}{\pi}}{18+\int x} \right] \nonumber \\
\label{eq:5} \\
\left(\sin(x)+y\right) &= \left\{ \left[z + \frac{a+b+\frac{4^k}{\pi}}{18+\int x} \right] \right\} \nonumber \\
\label{eq:6}
\end{align}

The result:

\begin{align*}
\sin(x) + y &= \left\{ z + \frac{a+b+\frac{4^k}{\pi}}{18+\int x} \right\} \\
\label{eq:5} \\
\left(\sin(x) + y\right) &= \left\{ \left[z + \frac{a+b+\frac{4^k}{\pi}}{18+\int x} \right] \right\} \\
\label{eq:6}
\end{align*}

- A brace that is opened (with \left, must be closed. If needed with "\right."
Matrices

Use an array for matrices

\begin{equation}
\mathbf{X} =
\begin{bmatrix}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots \\
\vdots & \vdots & \ddots \\
\end{bmatrix}
\end{equation}

and the result:

\[
X =
\begin{bmatrix}
x_{11} & x_{12} & \cdots \\
x_{21} & x_{22} & \cdots \\
\vdots & \vdots & \ddots \\
\end{bmatrix}
\] (6)
Matrices

Alternative: amsmath package (\usepackageamsmath in header)

\begin{equation}
\mathbf{X} =
\begin{pmatrix}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots
\end{pmatrix} =
\begin{matrix}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots
\end{matrix} =
\begin{bmatrix}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots
\end{bmatrix} =
\begin{Bmatrix}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots
\end{Bmatrix}
\end{equation}

And the result:

\[
\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots \end{pmatrix} = \begin{bmatrix} x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots \end{bmatrix} = \begin{Bmatrix} x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots \end{Bmatrix} \tag{7}
\]
Math symbols

- For an overview of the most common symbols: the not so short introduction to \LaTeX
- Some important ones:
 - $\int, \sum, \pi, \Re, \Im, \mathbb{N}, \notin$
 - \int, \sum, \pi, \Re, \Im, \mathbb{N}, \notin$
- Some functions you should also typeset as a command:
 - $\cos(\alpha) \cos(\alpha) \sin(\alpha) \sin(\alpha)$ results in “$\cos(\alpha)\cos(\alpha)\sin(\alpha)\sin(\alpha)$”
Tabellen

Tabular omgeving

- The tabular environment allows you to put information in a horizontally and vertically structured manner
- \begin{tabular}[opties]{specificaties}

 \begin{tabular}{|r|l|}
 \hline
 7C0 & hexadecimaal \ \\
 3700 & octaal \ \\
 11111000000 & binair \ \\
 \hline
 \hline
 1984 & decimaal
 \end{tabular}

\begin{tabular}{|r|l|}
 \hline
 7C0 & hexadecimaal
 \hline
 3700 & octaal
 \hline
 11111000000 & binair
 \hline
 \hline
 1984 & decimaal
 \end{tabular}

Inputting (large) tables is another annoyance of \LaTeX
Tabulars: what you need to know

- Different (standard) column types are `c, l, r, p{width}`
- You can put a horizontal line as \hline, a partial one with \cline{2-4}
- Vertical lines: | next to the column type
- Merge columns:
 \multicolumn{aantal_kolommen}{opmaak}{inhoud}
- @{.} to align on the dot (column separator is the dot)

\begin{tabular}{c | r @{.} l}
Symbol & \multicolumn{2}{c|}{Value} \\
hline
\pi & 3&1416 \\
\cline{1-2}
\pi^\pi & 36&46 \\
\((\pi^\pi)^\pi & 80662&7
\end{tabular}

Symbol & Value \\
\pi & 3.1416 \\
\pi^\pi & 36.46 \\
\((\pi^\pi)^\pi & 80662.7
Nice tables

- Limit the lines in a table

No booktabs

\begin{tabular}{|l|r|}
\hline
header & nog \\
\hline
1 & 2 \\
\hline
1 & 2 \\
\hline
\end{tabular}
Nice tables

- Limit the lines in a table
- Use booktabs package for nicer tables

\begin{tabular}{lr}
\toprule
header & nog \\
\midrule
1 & 2 \\
1 & 2 \\
\bottomrule
\end{tabular}
Nice tables

- Limit the lines in a table
- Use booktabs package for nicer tables
- Use the tabularx package to set the width of the table (X means column of the type "p" where the width is equal to the table width minus the other columns)

\begin{tabularx}{0.8\textwidth}{lX}
\hline
header & nog \\
\hline
1 & 2 \\
1 & 2 \\
\hline
\end{tabularx}
Floating tables

\begin{table}[htbp]
 \centering
 \begin{tabular}{lr}
 \hline
 header & nog \\
 \hline
 1 & 2 \\
 1 & 2 \\
 \hline
 \end{tabular}
 \caption{floating table\label{tab:table}}
\end{table}

- Moves through the text and is placed there where \LaTeX{} thinks it is best
- You can refine this using the \textit{[htbp]} options (here, top, bottom, page)
- You can refer to them, like here we do here to table 1 on page 50.
- Inside the table environment, you don’t need a tabular environment
How to make a table (efficiently)

- Data often comes from a spreadsheet
- Some programs allow you to export to LaTeX (e.g. gnumeric)
- Winedt has a table editor (others maybe also)
Insert an external figure

- In header: `\usepackage{graphicx}
- Potentially in header: `\graphicspath{{figs/}{fotos/}}
- In body:
 `\includegraphics[option1,option2]{path/name/of/figure.ext}
- Using pdflatex you can include .jpg, .png and .pdf
- Using normal latex you can include .eps invoegen and .png and .jpg if you define a bounding box
- Vector images whenever possible!
- Some options:
 - `width` Define the width of the figure (e.g.: width=0.8\textwidth)
 - `height` Define the height of the figure (e.g.: height=6cm)
 - `angle` Rotate the figure counter-clockwise (vb: angle=90)
 - `scale` scale with factor
 - `viewport=x1 y1 x2 y2` look to the figure with a window at \((x_1,y_1) \) (lower left) \(\rightarrow (x_2,y_2) \) (upper right)
 - `clip=true` clip to the viewport
Code for figures

\includegraphics[width=0.4\textwidth]{latex.jpg}

results in: www.LatexLair.com
Code for figures

\includegraphics[width=0.4\textwidth]{cute-chick.jpg}
\includegraphics[width=0.4\textwidth, viewport=50 50 150 200, clip=true]{cute-chick.jpg}

Geeft:
Code for figures

\includegraphics[width=0.4\textwidth]{cute-chick.jpg}
\includegraphics[width=0.4\textwidth, viewport=50 50 150 200, clip=true]{cute-chick.jpg}
Code for figures

\includegraphics[width=0.4\textwidth]{cute-chick.jpg}
\includegraphics[width=0.4\textwidth,viewport=50 50 150 200,clip=true]{cute-chick.jpg}
Code for figures

\includegraphics[width=0.4\textwidth]{cute-chick.jpg}
\includegraphics[width=0.4\textwidth,viewport=50 50 150 200,clip=true]{cute-chick.jpg}

Geeft:
Code for figures

\includegraphics[width=0.4\textwidth]{cute-chick.jpg}
\includegraphics[width=0.4\textwidth,viewport=50 50 150 200,clip=true]{cute-chick.jpg}

Geeft:
Making figures in \LaTeX

- Picture environment
- pstricks
- \textsc{Tikz (http://en.wikipedia.org/wiki/PGF/TikZ)}

\begin{picture}(5,5)
 \linethickness{6pt}
 \put(2,1){\line(0,1){2}}
 \put(0,0){\vector(1,2){1}}
 \put(2,3){\vector(2,3){1}}
 \color{blue}
 \put(-2,6){\circle*{10}}
 \put(2.2,3.2){{$\sqrt{a_1}$}}
\end{picture}
\begin{circuitikz}[\textasciitilde >=stealth']
\draw[blue!30,step=10mm] (-1,-1) grid (6,3);
\draw[very thick] (0,0) to[sV=$e(t)$,*-*] (0,2) to[short,i=$i(t)$] (1,2) to[R=R_1] (3,2) to[L=L_1,-*] (5,2) to[closing switch=SW] (5,0) to[short,*-*] (0,0);
\end{circuitikz}
Floating figure environment

- Similar as table
- Also here important to remember labels and references

\begin{figure}[btp]
\includegraphics[width=0.5\columnwidth]{latex}
\caption{bijschrift\label{fig:figuur}}
\end{figure}

Figure: bijschrift

Bibtex

- In a separate .bib bestand ⇒ sort of database in ASCII format
- Number of fields are required (depending on type) some are optional
- Always needed: unique key
- Use the abilities of your editor
- To refer to a reference: \cite{key}
- \bibliographystyle{IEEEtran}
- \bibliography{file1,file2}
- latex file.tex; bibtex file; latex file.tex; latex file.tex
- pdflatex file.tex; bibtex file; pdflatex file.tex; pdflatex file.tex
- \nocite{key} and \nocite{*}
Bibtex II

- Giving names:
 - last-name1a last-name1b, first-name1a first-name1b **and** last-name2a last-name2b, first-name2a first-name2b
 - author={Kwak, Alfred Jodocus and of Belgium, Albert Felix Humbert Theodoor Christiaan Eugène Marie}

- Capitals: Yet another \LaTeX" feature"!
 - Most (all?) bibtex formats remove all capitals except for the first one from titles
 - put the capitals you would like to retain between curly brackets
 - title={Belgium, capital of \{E\}urope and \{NATO\}, but no government}
 - or use \mbox

- IEEExplore, Elsevier, google scholar let you download complete bibtex references. Search for it!
Examples

@Book{kundur93:_power_system_stabil_contr,
 author = {Kundur, Prabha},
 title = {Power System Stability and Control},
 publisher = {McGraw-Hill},
 year = 1993,
 number = {ISBN: 0-07-035958-X},
 series = {EPRI: Power Systems Engineering},
 address = {New York}
}

@article{AE2005,
 author = {Einstein, Albert},
 title = {Zur Elektrodynamik bewegter K"orper},
 journal = {Annalen der Physik},
 year = 1905,
 volume = 17,
 month = jun,
}
There is a template

- https://eng.kuleuven.be/onderwijs/studenten/masterproef/index.html,
- Read the manual!
- Extensive template, many options (e.g. choose the correct master)
- Focus is contents!...
- Chapters in separate files?
- Save your figures and the source in a meaningfull and clear spot
- Start on time...
Nice to know stuff

- Xfig: figures (line diagrams) in which you can export \LaTeX
- Several other scientific packages allow you to do this (somehow)
- Easy way to get figures from xls or elsewhere: print to pdf
- Matlab figures: laprint:
 http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=4638&objectType=file
- IEEE citations: directly from the IEEEXplore website (similar for elsevier)
- Jabref, mendeley: more advanced manager for bibtex files (or even collections of papers)
Links

- Not so short introduction to \LaTeX:
 http://tobi.oetiker.ch/lshort/lshort.pdf
- \LaTeX wiki: http://en.wikibooks.org/wiki/LaTeX
- The FAQ: http://www.tex.ac.uk/cgi-bin/texfaq2html
- http://www.google.be
- https://eng.kuleuven.be/onderwijs/studenten/masterproef/index.html,
Vragen?